Toggle navigation
首页
常用链接
基础知识
常用平台
机器学习
深度学习
强化学习
图像处理
自然语言处理
语音处理
视频处理
杂记
关于
首页
>
深度学习
> 正文
deep learning book-第5章 Machine Learning Basics
标签:
deep learning book
2016-12-10
几个git链接:
https://github.com/HFTrader/DeepLearningBook
https://github.com/ExtremeMart/DeepLearningBook-ReadingNotes
https://github.com/ExtremeMart/DeepLearningBook-CN
目录:
5.1 Learning Algorithms
The Task, T
The Performance Measure, P
The Experience, E
Example: Linear Regression
5.2 Capacity, Overfitting and Underfitting
The No Free Lunch Theorem
Regularization
5.3 Hyperparameters and Validation Sets
Cross-Validation
5.4 Estimators, Bias and Variance
Point Estimation
Bias
Variance and Standard Error
Trading off Bias and Variance to Minimize Mean Squared Error
Consistency
5.5 Maximum Likelihood Estimation
Conditional Log-Likelihood and Mean Squared Error
Properties of Maximum Likelihood
5.6 Bayesian Statistics
Maximum A Posteriori (MAP) Estimation
5.7 Supervised Learning Algorithms
Probabilistic Supervised Learning
Support Vector Machines
Other Simple Supervised Learning Algorithms
5.8 Unsupervised Learning Algorithms
Principal Components Analysis
k-means Clustering
5.9 Stochastic Gradient Descent
5.10 Building a Machine Learning Algorithm
5.11 Challenges Motivating Deep Learning
The Curse of Dimensionality
Local Constancy and Smoothness Regularization
Manifold Learning
原创文章,转载请注明出处!
本文链接:
http://hxhlwf.github.io/posts/dl-dlbook-chap5.html
上篇:
dual learning for mt
下篇:
在docker中不要使用sshd
comment here..
栏目分类
基础知识
常用平台
机器学习
深度学习
强化学习
图像处理
自然语言处理
语音处理
视频处理
杂记
常用链接
存档
标签
最新文章
zookeeper
thrift
storm
nginx
微服务
memcached
kubernetes
grpc
baidurpc
tensorflow基础用法