首页 > 图像处理 > 正文

2017年度10大值得读的cv方面的paper

标签:2017, cv


目录

参考 2017年度最值得读的AI论文 | CV篇 · 评选结果公布

1. Mask R-CNN

2. Image-to-Image Translation with Conditional Adversarial Networks

3. A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

4. Bayesian GAN

5. Interpretable R-CNN

6. Learning Feature Pyramids for Human Pose Estimation

7. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

8. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

9. Triple Generative Adversarial Nets

10. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields


原创文章,转载请注明出处!
本文链接:http://hxhlwf.github.io/posts/cv-2017-cv-papers.html
上篇: 2017年度10大值得读的nlp方面的paper
下篇: capsule

comment here..